工具,還是對手?人工智慧與表演藝術的探索與角力

AI:當機器人寫了個劇本。 圖片提供/THEaiTRE
AI:當機器人寫了個劇本。 圖片提供/THEaiTRE

本文共4836字

PAR表演藝術 文/PAR表演藝術編輯部

如果有隻鸚鵡能回答任何問題,我將毫不猶豫宣稱牠是智慧生物。

- 狄德羅(Denis Diderot)-

信不信由你,人工智慧(artificial intelligence,AI)與表演藝術的糾葛已超過百年——在捷克劇作家卡雷爾.恰佩克(Karel Čapek)1920年的作品《羅梭的全能機器人》(Rossum's Universal Robots)中,「機器人」(robot)一詞首度被用來描述這種外型似人,擁有與人類相同思考與行動能力的機械;而劇作中機器人原本設計來服務人類,卻「覺醒」而導致人類毀滅的設定,也成了後世科幻作品對人工智慧的經典想像:從《2001 太空漫遊》的HAL 9000到《魔鬼終結者》的天網,機器一旦開始思考,毀滅人類似乎總是它們的首要任務。

如果我們把人類到底多不該存在先放一邊,這類故事原型正好讓我們一窺大眾對AI的終極想像:它們能理解回應世界的變動並解決沒有標準答案的問題,最終甚至可能演化出自由意志而做出(就人類看來)叛逆的決定。這種能像人一般認知、思考、學習的AI,稱作通用人工智慧(artificial general intelligence,AGI)或強人工智慧(strong AI)。

黑盒子中的秘密:人工智慧是如何產生「智慧」?

AGI一直是AI研究領域的終極聖杯,現階段AGI離實現也還有段距離(註1);目前日常生活可見的AI多是另一種思維的產物:機械無需「真的」有智慧,它們只要能執行所謂的「智慧型任務」就可以了;比如在停車場出入口辨識車牌、在海關驗證身分、自動或輔助汽車駕駛等等。這類AI被稱作應用人工智慧(applied AI)或弱人工智慧(weak AI),基本上只能在人類的明確命令下執行單一任務,於此範疇外,則通常一無所知。

儘管如此,弱人工智慧仍不時震驚世人,特別在弈棋這個常跟「智力」聯想在一起的領域——比如1997年深藍擊敗西洋棋王卡斯帕洛夫,或2016年AlphaGo擊敗圍棋九段李世乭。但不論AlphaGo圍棋下得再好,不經過重新訓練,它並無法直接與人對弈其他棋類,更別說執行下棋以外的任務。

2022年以前,強弱人工智慧的區別仍相當明顯,但隨著以ChatGPT為首的生成式AI(generative AI)(註2)進入大眾視野,兩者邊界似乎變得有些模糊——能有模有樣回答幾乎任何問題的聊天機器人,狄德羅會毫無疑義認為它們有智慧嗎?就算我們把「谷歌停職員工聲稱AI有靈魂」或「聊天機器人向紐時專欄作家瘋狂示愛」這類驚悚故事只看作花邊新聞,2023年5月一則貨真價實的研究報告指出:在一項超過150萬人參與的線上測試中,玩家能在兩分鐘聊天時間內,正確辨識機器人的準確度只有60%——只比二選一瞎猜的50%機率好上一些。(註3)

即使幾乎騙倒人類,許多主流AI研究者仍認為ChatGPT等一眾聊天機器人不過只是能唯妙唯肖模仿人類的「隨機鸚鵡」(stochastic parrots)——它們並不理解自己在說什麼,只是根據學習過的巨量文本照樣造句。然而也有另一派聲音主張,真正的「理解」並不存在,「我們都只是隨機鸚鵡」(註4),智慧是結果,不是源由——根本上,這就是自柏拉圖以來即一直莫衷一是的「二元論」爭辯的延續。

有趣的是,近年AI發展所仰賴的基礎模型,仿似針對這道經典哲學難題的模擬實驗:這種稱作類神經網路(artificial neural network)(註5)的演算模型,試圖在物理機制上模仿大腦的運作,它們由巨量的神經元與突觸構成複雜的多層網路結構,並藉由大量訓練素材,透過回饋機制增強或抑制突觸的強度,來進行「學習」(註6)。

2010年後隨著硬體運算能力的成長以及「深度學習」(deep learning)演算法的發明,類神經網路得以突破規模限制,達到接近人腦的複雜程度,從而展現出驚人的理解及回應能力——不過遺憾的是,這不表示數千年來的難題已然得解——就像解剖人腦沒法找出智慧的源頭,我們也無法透過分析類神經網路得知它們如何(或有沒有)產生智慧:神經網路「學會」的知識或思想,分布在數以百億計的神經元以及數以兆計的突觸組合裡,分析此等數量級的綜合行為,基本上是不可能的任務。

生成式AI創作,現正進行中

不管AI是否真有智慧,會不會有天(有意無意)毀滅人類,對一般大眾來說,這大抵還是件「交給大人去煩惱的事」,畢竟光是日常生活可見的衝擊,就已十足令人憂心——想想網紅的deepfake換臉事件,人類在道德灰色地帶學習新工具的速度,只怕AI看了也瞠目結舌。而生成式AI對創作本質的動搖,更引起許多創意工作者的憂懼。創作曾被認為是人類智慧最重要的堡壘(想想創作牽涉多少不同的心智活動,認知、共感、表達、判斷⋯⋯),現在卻受到前所未有的挑戰——從2022年遊戲設計師傑森.艾倫(Jason M. Allen)以Midjourney繪製的畫作《歌劇院空間》(Théâtre D’opéra Spatial)獲得比賽首獎,引爆「AI創作到底算不算藝術」的論戰;到2023年好萊塢大罷工,ChatGPT被認定是編劇工作權的重大威脅——這些爭議,尚且是在創作者普遍認為AI創作能力還遠不及人類的情況下發生的,而隨著AI的突飛猛進,創作者又將面對怎樣的未來?

另一方面來說,從古希臘的機器神到當代的VR藝術,新科技所帶來的新工具、新媒介、與新生活型態,往往激發更多創作的素材與創意的可能。利用AI來創作已是行之有年的嘗試:AI作曲軟體AIVA早在2016年便得到法國SACEM認證,成為世界上第一個被版權機構認證的虛擬作曲家;AI編舞的歷史更加悠久,1960年代便有第一套AI編舞工具出現,近年來則有匈牙利編舞家瓦倫西亞.詹姆斯(Valencia James)的AI_am計畫、英國編舞家韋恩・麥奎格(Wayne McGregor)跟Google合作的Living Archive計畫等等,從不同面向探索AI輔助編舞的可能;而2021年,AI也在捷克完成了第一個登台的編劇作品,《AI:當機器人寫了個劇本》(AI: When a Robot Writes a Play)(註7),作為佩恰克的機器人劇作誕生百年的慶祝活動,此劇以現場直播的方式,於疫情期間在線上首演。

美國劇場導演安妮.多森(Annie Dorsen)可能是最早利用AI作為媒材的創作者之一:多森從2010年開始與程式設計師合作,創作了一系列以AI為主角,稱作「演算法劇場」(algorithmic theater)的作品。系列首作《哈囉你好》(Hello Hi There)唯二的「演員」是兩台筆記型電腦,它們安坐在長滿青草的土堆上,每晚即興漫談著人性,內容場場不同。(註8)AI行為難以預測的特質,也成為許多後繼者利用的素材,從英國楊維克劇院(Young Vic Theatre)2021年推出的《AI》,到2023年在紐約外百老匯登場的音樂劇《毛皮與啟示錄》(Fur and Revelations),AI各自在現場扮演即興創作文本或音樂的角色;2022年在德國上演的歌劇《逐流人生》(Chasing Waterfalls)更是一口氣集上述大成——AI不僅共同撰寫文本、音樂,還在場上擔任演員╱歌者(註9);全劇更包含4分多鐘的即興片段,完全由AI現場作曲、演奏、演唱完成。

藝術產製的未來會發生什麼事?

儘管身為AI創作的先行者,多森對AI入侵的前景卻十分悲觀。在2023年結合ChatGPT創作的最新講演(lecture performance)作品《盜火者普羅米修斯》(Prometheus Firebringer)演出後,多森甚至表示:「即使目的是為了批判它們,我對使用這些工具來創作依然感到矛盾,我懷疑我以後還會這麼做。」

2024年1月新出爐的研究則捎來更不祥的訊息:這項針對近2800位頂尖AI研究者的調查(註10)顯示,平均來說,研究者預測AI在2027年便能模仿特定作曲家寫出新曲,到2030年,AI便可能寫出登上《紐約時報》排行榜的暢銷小說。且莫驚慌(或欣喜)——暢銷小說未必等於深刻的藝術,就像好萊塢罷工現場的抗議標語所言:「ChatGPT沒有童年創傷」(註11),藝術家擔心的或許不是AI能創作出曠世巨作,而是AI依循娛樂化公式大量產出,沒有深刻意義與價值,甚至徒具某種模仿風格的作品,將會劣幣驅逐良幣;而由AI模仿的廉價「贗品」,甚至可能排擠正牌藝術家的生存空間。

或許AI創作的大舉入侵無可避免,但我們不妨換個角度想想(或至少安慰自己)——AI可能可以製造出唯妙唯肖,教宗穿羽絨服的照片,但它們會覺得這些照片有趣,乃至起心動念去「創作」它們嗎?這也許是AI天生的缺陷——對沒有肉體,生命近乎無窮與不朽的AI來說,真可能共情人類,對天地悠悠生老病死愴然涕下嗎?當然AI仍在飛速發展,一切言之尚早;但假設在創作動機與美學觀點上,AI終需人類的詠唱與召喚,那真正會天翻地覆的或許不是創作,而是創作的產程:隨著創作門檻降低,藝術創作將會更加去菁英化及普及化——許多傳統職位會消失,但大眾或許會迎接創意更加百花齊放,人人都能成為藝術家的未來。

註:

1.某些樂觀的預測認為2030年AGI有機會實現,而如何監管AGI不至於毀滅人類,當然也是學界當前如火如荼的研究課題。

2.生成式AI的訓練重點在於如何產生內容;相對來說,像前述的車牌辨識或棋類應用,則專注在訓練AI如何「做出正確決定」,後者通常被稱作判別式AI(discriminative AI)。

3.這項由以色列公司AI21 Labs進行的研究基本上實作了人工智慧領域最經典的思想實驗:「圖靈測試」(Turing test),在1950年由20世紀最重要的數學家及計算機科學家之一——艾倫・圖靈(Alan Turing)提出,原論文中稱之為「模仿遊戲」(那部以圖靈為主角的電影便是依此命名);其假設是:「若一台機器能透過傳輸裝置與人類對話而不被辨識出身分,便可稱其具有智慧。」換言之,只要一具機器看起來有智慧,那麼它便是有智慧的。

4.OpenAI的執行長Sam Altman在ChatGPT推出5天後在推特上說:「我是一隻隨機鸚鵡,你也是。」

5.不論是ChatGPT使用的大語言模型(large language model,LLM)或是Midjourney使用的生成對抗網路(generative adversarial networks,GAN),都是建立在類神經網路上頭。

6.相對來說,早年的AI發展,大多建立在「模仿人類的理性思考」上,比如透過預先編寫好的的規則進行決策,或藉由統計模型及訓練資料學習特定情境與模式。其中一個主因是人腦太複雜了——在電腦硬體的能力及相關理論模型尚未成熟時,模擬人腦不論在理論或實務規模上都不可行。

7.在戲劇構作David Košťák提供的場景設定與台詞引導下,整個劇本大約有90%的台詞由稱作THEaiTRobot的AI工具生成。這個工具建立在ChatGPT的前代模型GPT-2上,theaitre.com有提供免費試用,以及此劇本的全文下載。

8.當年當然還沒有ChatGPT甚至其前身,多森與研究者使用的是早期AI的方法,預先編寫規則,讓聊天機器人能根據上文選擇對話,進行即興對談。值得一提的,AI的談資主要取材自1971年傅柯與喬姆斯基關於人性的經典電視辯論,再加上莎士比亞、聖經,及YouTube的影片評論等等。

9.透過影像呈現。

10.《數千位AI作者談AI的未來》(Thousands of AI Authors on the Future of AI ),刊登在該月的《電腦與社會》(Computer and Society)期刊上。

11.編劇的內部笑話,意指沒有童年創傷,就寫不出好劇本。

※本文由《PAR表演藝術》授權刊載,未經同意禁止轉載。

PAR表演藝術

創立於1992年10月的《PAR表演藝術》,由國家兩廳院發行,為華人世界唯一結合人文與表演藝術評介的期刊。自2021年1月起轉型為雙月刊,單月出刊,12月出版特刊,1年共7期。改版後的雜誌將視角拉回台灣,放眼亞洲,挖掘更多屬於表演藝術圈產業生態、幕後故事及更多有趣的專業門道,讓您貼近表演藝術的台前與幕後。

相關

news image

「teamLab 共創!未來園」全新展覽盛大來台! 日本沖繩夢幻同步 海陸空一次滿足

By 非池中藝術網
news image

引領當代珠寶進化之路 AKACHEN 陳智權以鈦金藝術打造珠寶新潮流

news image

AKACHEN 專欄/威廉王子求婚就用它!宛如王室恩寵的藍寶石 珠寶設計師從顏色、切工教你寶石挑選技巧

news image

以「光」與「愛」為主題 西班牙藝術家 Plensa 在台首作〈光與愛〉於富邦美術館定點展出

By 名門薈
news image

Art Basel Paris 正式更名!2024年10月將進駐全新巴黎大皇宮

看更多

熱門

news image

極致跑格 SUV 生力軍 Porsche Macan T 在台發表

news image

邱德夫專欄/日本威士忌的歷史源流 從「日本威士忌之父」竹鶴政孝談起

news image

孫德銘專欄/在一場不夠精彩的錶展之後... 回顧2024日內瓦錶展

news image

張維中專欄/日本老錢湯翻出新面貌 一場「錢湯文化復興運動」正在進行中

news image

AKACHEN 專欄/威廉王子求婚就用它!宛如王室恩寵的藍寶石 珠寶設計師從顏色、切工教你寶石挑選技巧

看更多

留言

完成

成功收藏,前往會員中心查看!