經濟日報 App
  • 會員中心
  • 訂閱管理
  • 常見問題
  • 登出

Amazon Bedrock 發布更多模型選擇和全新強大功能, 助力建構安全和規模化生成式 AI 應用程式

本文共9616字

MediaOutReach 媒體拓展/贊助

  • AnthropicCohereMetaStability AI 和亞馬遜最新的高性能模型將為客戶提供更豐富的業内領先模型選擇,以支援各種應用場景
  • Amazon Bedrock 的模型評估功能夠讓客戶能夠評估、比較和選擇最適合其應用場景和業務需求的模型
  • Amazon Bedrock 的知識庫功能簡化生成式 AI 應用程式的開發流程,使用私有資料來提供即時的個人化回應
  • Amazon Bedrock 中的 Cohere CommandMeta Llama 2 Amazon Titan 模型支援微調,為客戶的模型定制提供更多選項,Anthropic Claude 亦即將提供調校功能
  • 借助 Amazon Bedrock 的代理功能,生成式 AI 應用程式可以在確保安全和私隱受保護的情況下執行多種多步驟業務指令
  • Amazon Bedrock Guardrails 功能可協助客戶部署和制定針對其生成式 AI 應用程式的保護措施,滿足「負責任的AI」的要求
  • Blueshift、電通、DruvaGoDaddyINRIXMongoDBOfferUpSalesforceSmartBots AI TTEC Digital已率先借助Amazon Bedrock應用生成式 AI

香港 - Media OutReach - 2023年12月1日 - AWS 在 2023 re:Invent 全球大會上宣布推出更多 Amazon Bedrock 模型選擇及全新功能,協助客戶更輕鬆地構建和擴展其業務專用的生成式 AI 應用程式。Amazon Bedrock 是一項全面託管服務,使用者可輕鬆存取來自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI和亞馬遜的多種業内領先的大型語言模型和其他基礎模型(FM),以及客戶構建生成式 AI 應用程式所需的各項功能,確保私隱和安全的同時簡化開發流程。此次發布進一步降低了生成式 AI 應用的門檻 — 為客戶提供了更多行業領先的模型選擇和全新的模型評估功能,以簡化客戶使用相關私有資料以定制所需模型,並為客戶提供自動執行複雜任務的工具,同時保障客戶可以負責任地建構和部署生成式 AI應用程式。Amazon Bedrock 的新功能為各行各業及不同規模的企業在生成式 AI 領域帶來改變,助力企業創新並重塑客戶體驗。如欲開始使用 Amazon Bedrock,請瀏覽 aws.amazon.com/bedrock/。

AWS 數據和機器學習全球副總裁 Swami Sivasubramanian 博士表示:「生成式 AI 有望成為我們這個時代最具變革性的技術。客戶積極應用生成式 AI 創造新機遇和應對業務挑戰,啟發了我們。當客戶將生成式 AI 融入業務時,Amazon Bedrock全託管方式的領先模型、定制功能、代理功能以及企業級安全和私隱保障將為他們帶來便利。有了更多觸手可及的工具,客戶可以使用 Amazon Bedrock 充分發揮生成式 AI 的潛力,帶來創新的用戶體驗、重塑業務並加速生成式 AI 發展。」

企業希望在各種場景中應用生成式 AI,例如提高生產效率、創新用戶體驗和開啟全新工作互動模式。然而,生成式 AI 技術正急速發展,每天都有新的服務和創新出現。在瞬息萬變的當下,客戶的適應能力至關重要。企業需要能夠使用最新、最好的可用模型進行試驗、部署、反覆運算和調整,並時刻準備好迎接變化。為了應對這些挑戰,AWS 開發了 Amazon Bedrock,使模型建構和移動就像 API 呼叫一樣簡單,讓所有開發人員都可以獲得模型定制的最新技術,並確保客戶的安全和資料私隱。眾多國際企業包括 Alida、Automation Anywhere、Blueshift、BMW 集團、Clariant、Coinbase、Cox Automotive、電通、Druva、Genesys、Gilead、GoDaddy、Hellmann Worldwide Logistics, INRIX, KONE、LexisNexis Legal & Professional、Lonely Planet、NatWest、Nexxiot、OfferUp、宏盟集團、The PGA Tour、Proofpoint、Salesforce、西門子、竹中公司和 Verint 已率先採用 Amazon Bedrock 應用生成式 AI。此次發布引入了新的模型和功能,使客戶能夠更輕鬆地建構和有規模的生成式 AI 應用。

AnthropicCohereMeta Stability AI 的最新模型以及亞馬遜 Titan 的新增功能為客戶提供更多模型選擇

沒有一個模型適合用於所有場景,模型的功能、價格和性能均不盡相同,客戶需要可以輕鬆存取及選擇各種模型,透過多次嘗試和切換模型,再選出與需求最匹配的模型。借助 Amazon Bedrock,客戶可以利用最新版本的模型進行快速創新。現時客戶已可以透過 API 訪問多個模型— 包括新推出的 Anthropic Claude 2.1 和 Meta Llama 2 70B 以及最近推出的 Stability AI Stable Diffusion XL 1.0、Meta Llama 2 Chat 13B、Cohere Command Light、Cohere Embed English和Cohere Embed 多語言模型。除了 Amazon Titan Text Embeddings 和 Amazon Titan Text 模型(現已全面可用)之外,AWS 還提供了 Titan Multimodal Embeddings 和 Amazon Titan Image Generator 為客戶建構生成式 AI 應用程式提供更多選擇和靈活性。Amazon Titan 模型由 Amazon Bedrock 獨家提供,該模型由 AWS透過大量及多樣的案例和資料集上所創建,並已進行過預先訓練,並內置了支援負責任地使用 AI 這項功能。如果正式可用的 Amazon Titan 模型或其輸出的內容侵犯了第三方的版權,亞馬遜將對使用這些模型的客戶進行賠償。

  • Amazon Bedrock 上的 Anthropic Claude 2.1Anthropic 是一家從事 AI 安全和科研的公司,致力於建構可靠、可解釋和可控的 AI 系統。Anthropic 已將其最新版本的語言模型 Claude 2.1 引入 Amazon Bedrock。Claude 2.1 提供了長達 200,000 個 token 的語境窗口,並且提高了長文檔的準確性。客戶可以處理文本密集型文檔,例如財務報表和內部資料集。Claude 2.1 能夠總結和對比文檔、進行問答等。Anthropic 報告稱,與以前的模型相比,Claude 2.1 在開放式對話中的錯誤陳述減少達 50%,錯誤陳述率減少了一半。
  • Amazon Bedrock 上的 Meta Llama 2 70BLlama 2 是 Meta 的新一代語言模型。Llama 2 的訓練數據比 Llama 1 多 40%,上下文長度是 Llama 1 的兩倍。除了最近發布的 Llama 2 130 億參數模型之外,Llama 2 700 億參數模型在 Amazon Bedrock 上亦已可用。Llama 2 Chat 建立在預訓練的 Llama 模型上,通過指令資料集和超過 100 萬條人工注釋進行微調,針對對話場景進行優化。這些模型在多個外部基準測試中的表現卓越,包括推理、編碼、熟練程度和知識測試,並在 Amazon Bedrock 上提供了極高的性能價格組合。
  • 新的 Amazon Titan Image Generator 現已推出預覽版: Amazon Titan Image Generator 可協助廣告、電子商務、媒體和娛樂等行業的客戶通過使用自然語言提示生成高品質、逼真的圖像或增強現有圖像,以低成本快速構思和大量反覆運算圖像。這一類模型可以理解複雜的提示詞並生成相關圖像,且準確度較高,少有扭曲原意的情況,也不易產生不當內容,繼而避免傳播錯誤資訊。客戶可以在 Amazon Bedrock 控制台中使用該模型,在配置維度並指定模型應生成的圖像變數數量之前,輸入自然語言提示,以生成圖像或上傳圖像進行自動編輯。在編輯過程中,客戶可以隔離圖像的某些部分以添加或替換細節(例如,將滑浪板插入海灘場景或將汽車廣告背景中的高山替換為森林),他們亦可以使用其他與原作風格相同的細節擴展圖像的邊界。為了兌現 AWS 今年早些時候在白宮做出的承諾,所有 Amazon Titan 生成的圖像都包含隱形浮水印,以通過建立嚴謹的識別 AI 生成圖像的機制來協助減少錯誤資訊的傳播,促進 AI 技術的安全、可靠和透明發展。AWS 是首批廣泛發布內置隱形浮水印的模型供應商之一,這些浮水印整合到輸出的圖像中,並不允許編輯更改。
  • 全新 Amazon Titan Multimodal Embeddings 現已正式可用:Amazon Titan Multimodal Embeddings 可協助客戶為使用者提高多模態搜索和推薦體驗,讓輸出結果更準確且與語境相關。模型可以將圖像和短文本轉換為 embedding 數字表示形式,使模型能夠輕鬆理解語義以及資料之間的關係。最終使用者可以使用圖像和文本提示的任意組合進行搜索查詢。該模型將為搜索查詢生成嵌入,並將它們與已有的嵌入相匹配,以產生更準確的搜索和推薦結果。例如,擁有數億張圖像的圖庫攝影公司可以使用該模型來增強其搜索功能,這樣用戶就可以使用短語、圖像或圖像和文本的組合來搜索圖像(例如,「我要和這張照片類似的圖像,但天空是晴朗的」)。 一般情況下,使用該模型生成向量非常適合於需要高準確度和快速回應的搜索場景。然而,客戶也可以生成更小的維度來優化速度和性能。Amazon Titan Text Embeddings 模型加入了 Amazon Titan Text Embeddings,可以將詞語、短句、長文檔等文本輸入轉化為嵌入(embeddings),用於搜索和個人化推薦等場景。

新功能可幫助客戶更有效率地評估、比較和選擇最適合其應用場景和業務需求的模型


如今,企業擁有多個模型選項來支援生成式 AI 應用程。在具體應用場景中,為了在準確性和性能之間取得適當的平衡,企業必須有效地比較模型,並找到首選指標。為了比較模型,企業必須首先花幾天時間確定標準、設置評估工具並運行評估,這些程序都需要專業的資料科學知識。此外,這些測試無法用於主觀標準的評估(例如,品牌聲量、相關性和風格),因為主觀標準需要通過繁瑣、耗時的人工審核進行判斷。對於每個新場景模型,這些比較所需要耗費的時間、專業知識和資源使企業望而卻步,從而限制了他們對生成式 AI 的使用。

Amazon Bedrock 中的模型評估功能現已推出預覽版,可幫助客戶使用自動或人工評估來評估、比較和選擇適合其特定應用場景的最佳模型。在 Amazon Bedrock 控制台中,客戶可以選擇他們想要針對相應任務(例如問答或內容摘要)進行比較的模型。如需自動評估,客戶可以選擇預定義的評估標準(例如準確性、穩健性和是否含有有害內容)並上傳自己的測試資料集或從內置的公開資料集中進行選擇。對於需要複雜判斷的主觀標準或內容,客戶只需經過簡單設定即可輕鬆設置基於人工的評估工作流程。這些工作流程利用客戶的內部員工隊伍或使用AWS提供的員工隊伍來評估模型回應。在人工評估的過程中,客戶可以定義特定的指標(例如,相關性、風格和品牌聲量)。客戶完成設置後,Amazon Bedrock 就會運行評估並生成報告,以便客戶輕鬆了解模型在關鍵標準上的表現,並作出相應協調,從而快速選擇最適合其應用場景的模型。

擴展的全新模型定制功能可協助客戶在AWS上私密且安全地釋放資料價值

企業希望最大限度地釋放資料價值,以提供大規模的卓越用戶體驗,這些體驗經過獨特設計,能夠反映公司的風格、意見和服務。Amazon Bedrock 中提供新的專門建構功能,可協助客戶私密且安全地使用自己的資料定制模型,以構建差異化的生成式 AI 驅動的應用程式。

  • Amazon Bedrock 知識庫功能使用與語境和公司相關的資料定制模型回應:組織希望使用專有資料補充現有模型,以獲得更相關和更準確的回應。為了給模型配備最新資訊,組織轉向 retrieval augmented generation (RAG),這種技術通過從多個來源(例如文件儲存庫、資料庫和 API)獲取資料,將資料與提示詞結合。Amazon Bedrock 知識庫功能現已全面可用,可將模型安全地連接到公司內部資料來源以用於 RAG,為聊天機械人和問答系統等案例提供更準確且針對特定語境的回應。知識庫是完全託管的,因此客戶只需指明資料位置,然後知識庫就會獲取文本文檔,並將資料保存到向量資料庫或代表客戶設置一個向量資料庫。當用戶進行查詢時,Amazon Bedrock 會自動編排 RAG,通過模型獲取相關文本來增強提示詞,將提示詞發給模型,最終得到回應。Amazon Bedrock 知識庫為資料庫提供向量功能,包括 Amazon OpenSearch、Pinecone 和 Redis Enterprise Cloud的向量引擎,上述功能亦將於 Amazon Aurora 和 MongoDB 上推出。
  • Cohere Command、Meta Llama 2 和 Amazon Titan 模型現在可以在 Amazon Bedrock 上進行微調,並且即將支援 Anthropic Claude 2:除了 RAG 之外,企業還可以利用微調功能在具體任務(例如,文本生成)中進一步訓練模型,使用標記資料集調整模型參數,使其符合業務需求,將已掌握的知識擴展到組織和終端使用者使用的詞彙庫中。例如,零售客戶可以在產品描述資料集上微調模型,以協助其了解品牌風格,從而為網站編寫更準確的描述。Amazon Bedrock 現在支持對 Cohere Command 和 Meta Llama 2,以及 Amazon Titan Text Express、Amazon Titan Text Lite、Amazon Titan Multimodal Embeddings 和 Amazon Titan Image Generator(預覽版)的完全託管微調,因此客戶可以使用帶標籤的資料集提高特定任務的模型準確性。此外,AWS客戶很快就能夠利用自己的資料來源微調 Anthropic Claude 2 的性能。要微調模型,客戶可以選擇模型,使用 Amazon Bedrock 製作副本。之後,客戶可以在 Amazon S3 中的標記示例,而Amazon Bedrock(利用新資訊增強複製模型)會在保證私隱的情況下對其進行訓練,在得到結果。模型越是經過精準微調,回應會越相關且個人化。客戶資料在傳輸過程中和靜態時都經過加密,因此所有寶貴的客戶資料都是始終安全且保密的。AWS和第三方模型提供商均不會使用 Amazon Bedrock 的任何輸入或輸出內容來訓練其模型。

借助 Amazon Bedrock 代理功能,生成式 AI 應用程式可以使用公司系統和資料來源執行多步驟任務

現存的模型雖然能夠有效地進行對話和創建新內容,但如果它們能夠執行更複雜的操作,例如解決問題以及與公司系統互動以完成任務(例如,旅行預定或訂購替換零件),將可以為企業提供更多價值。然而,這需要個人化地將模型與公司資料來源、API 以及內部和外部系統整合起來。開發人員必須編寫程式來協調模型、系統和使用者之間的互動,使應用程式可以按邏輯循序執行一系列 API 呼叫。為了將模型與資料來源連接起來,開發人員必須部署 RAG,以便讓模型可以根據任務調整回應。最後,開發人員必須配置和管理必要的基礎設施,並制定資料安全和私隱權原則。這些步驟非常耗時且需要專業知識,因此從而減慢了生成式 AI 應用程式的開發速度。

現在正式可用、完全託管的 Amazon Bedrock 代理功能使生成式 AI 應用程式能夠跨公司系統和資料來源執行多步驟任務。代理可以計畫和執行大多數業務任務,例如回答有關產品可用性的問題或接受訂單。客戶可以使用簡單的設置過程創建代理 — 首先選擇所需的模型,用自然語言編寫一些說明(例如,「你是一位友好的客戶服務代理」,和「在庫存系統中檢查產品庫存情況」),並開放其對公司企業系統和知識庫的訪問存取;代理將自動分析請求並將其分解為邏輯序列,再使用模型的推理功能來確定所需的資訊;然後,代理通過識別要調用的 API 並決定何時調用它們來採取行動、滿足請求。代理還可以從專有資料來源檢索所需資訊,以提供準確且相關的回應。代理每次都會在後台安全、私密地執行此過程,使客戶無需設計提示、管理對話上下文或手動編排系統。借助適用於 Amazon Bedrock 的代理,客戶可以提升生成式AI應用開發的準確性和速度。

借助 Amazon Bedrock Guardrails 功能,客戶可以根據應用程式要求和負責任的 AI 策略實施跨模型保護措施

企業逐漸了解到生成式 AI 應用程式中的互動同樣需要管理,以保證所答即所問的用戶體驗和確保安全。雖然許多模型使用內置控制項來過濾不良和有害內容,但企業希望進一步限制互動,以保證話題始終與業務相關和符合公司政策,同時遵守「負責任的 AI」的原則。例如,銀行可能希望在線上助手的回覆中避免查詢競爭對手、避免提供投資建議、以及限制有害內容。此外,應用戶要求,程式可能要修改使用者的個人身份資訊 (PII)。企業可能需要更改模型、使用多個模型或跨應用程式複寫原則,他們需要一種簡單的方法一致性地部署他們的要求。這需要豐富的專業知識來建構具有此類保護措施的定制保護系統,並將其整合到應用程式中,而該過程可能需要數月時間。企業希望以一種簡化的方式在生成 AI 應用程式中強化關鍵策略和規則,以提供所答即所問的用戶體驗並讓客戶可以更安全地使用該技術。

Amazon Bedrock 的 Guardrails 功能現已推出預覽版,使客戶能夠為生成式 AI 應用程式實施保護措施。這些應用程式根據客戶應用場景和「負責任的 AI」原則定制,因此可以增強用戶互動的安全性和私隱性。Guardrails 功能可以提高Amazon Bedrock 上模型對應用程式中不良和有害內容回應的一致性。客戶可以將 Guardrails 功能應用於 Amazon Bedrock 上的所有大型語言模型,以及微調模型並與 Amazon Bedrock 代理功能結合使用。要在 Amazon Bedrock 控制台中創建一個Guardrail,客戶首先使用自然語言描述來定義其應用程式中需要被過濾的話題。客戶還可以配置仇恨言論、侮辱、性語言和暴力的門檻值,以將有害內容過濾到他們想要的水平。於 2024 年初,客戶更可以編輯模型回應中的個人身份資訊(PII)、設置髒話篩檢程式,並提供自訂單字清單來阻止用戶和模型之間的互動。 Guardrails 可以自動評估用戶查詢和模型回應,以檢測並防止出現屬於受限類別的內容。客戶可以創建多個 Guardrails 來支援不同的案例,也可以在多個模型中應用相同的 Guardrail。Amazon Bedrock 的 Guardrails 功能通過提供一致的用戶體驗,標準化生成式 AI 應用程式的安全和私隱控制,使客戶能夠安全地進行創新。

電通是全球最大的整合行銷和技術服務提供者之一。該企的創新與新興技術執行副總裁 Brian Klochkoff 表示:「我們致力將行銷、技術和諮詢整合起來,協助那些希望造福社會的品牌實現以人為本的轉型。生成式 AI 能夠讓我們更大規模、更快速地為客戶提供服務。這項技術不會取代我們的員工,而是為我們全球 72,000 名員工提供幫助。具體來說, Amazon Bedrock 為我們提供了企業級的控制能力和便捷部署第三方模型的能力,以便我們的產品和技術團隊能夠跨團隊分散使用。這讓團隊能夠在一個安全和負責任的環境下,借助最新、最前沿的生成式 AI 技術進行革新,為客戶打造創新機遇。」

MongoDB通過釋放軟件和資料的力量,幫助創新者創造、變革和顛覆行業。MongoDB 首席產品總監 Sahir Azam 表示:「越來越多來自各行各業的客戶希望利用生成式AI 來構建下一代應用程式,但仍然有不少人擔心資料私隱以及人工智能驅動系統輸出的準確性。為了滿足客戶的需求,我們將 MongoDB Atlas 用作 Amazon Bedrock 的知識庫,以便我們的共同客戶可以利用其運營資料安全地構建生成式 AI 應用程式,在達到最終使用者期望的信任度和準確性下創建個人化體驗。通過這種整合,客戶可以存取行業領先的基礎模型,並使用 MongoDB Atlas Vector Search 處理過的資料來創建應用程式,在正確的語境下提供更多相關的輸出。利用 Amazon Bedrock 知識庫中內置的資料私隱最佳實踐,客戶可以節省在生成式 AI 營運上花費的時間,從而更專注於技術部署,在 AWS上開發更有吸引力的最終用戶體驗。」

Salesforce 是領先的 AI 客戶關係管理(CRM)平台,通過 AI、CRM 和資料的力量實現高效和可信賴的客戶體驗。Salesforce 產品高級副總裁 Kaushal Kurapati 表示:「我們致力協助企業以全新、個人化的方式與客戶建立連繫,AI 對實現這承諾來說不可或缺。Amazon Bedrock 是我們開放模型生態策略的重要組成部分,能夠將模型與客戶的資料無縫整合,並整合到 Salesforce 工作流程當中。新增的評估能力可以根據不同標準對比基礎模型,包括從友好性、風格和品牌相關性等方面進行比較,從而讓模型部署變得前所未有的簡單、快捷。」

發佈者對本公告的內容承擔全部責任

關於Amazon Web Services

自2006年來,Amazon Web Services一直在提供世界上服務最豐富、應用廣泛的雲端服務。AWS為客戶提供超過240種功能全面的雲端服務,包括運算、儲存、數據庫、網絡、分析、機器學習與人工智能、物聯網、流動、安全、混合雲、虛擬和擴增實境(VR 和AR)、媒體,以及應用開發、部署和管理等方面,遍及32個地理區域內的102個可用區域(Availability Zones),並已公佈計畫在加拿大、德國、馬來西亞、紐西蘭和泰國建立5個AWS地理區域、15個可用區域。AWS的服務獲得全球超過百萬客戶的信任,包括發展迅速的初創公司、大型企業和政府機構。通過AWS的服務,客戶能夠有效強化自身基礎設施,提高營運上的彈性與應變能力,同時降低成本。欲了解更多有關AWS的資訊,請瀏覽:https://aws.amazon.com。

※ 歡迎用「轉貼」或「分享」的方式轉傳文章連結;未經授權,請勿複製轉貼文章內容

上一篇
澳洲會計師公會促請政府就財政預算案採取措施提升香港競爭力
下一篇
昇世集團推出 WRISE Prestige 服務亞太地區日益增長的大眾富裕階層

相關

熱門

看更多

看更多

留言

完成

成功收藏,前往會員中心查看!